+82 (10) 4095-3067 | doyunkm@gmail.com | doyunkim.com

SUMMARY

- Expertise in Circuit Design and Self-taught AI & SW skills
- · Hands-on experience in AI Model development for circuit design and optimization
- Led multiple research projects across XFN teams
- Interest in Applied AI, Design Productivity and Optimization

EXPERIENCE

Principal Research Scientist, Samsung Advanced Institute of Technology Feb 2022 ~ Present

- SSD PCB Trace S-parameter Prediction
 - Developed product-like PCB trace data for augmenting training data
 - Built S-parameter prediction model with Graph Transformer based on geometrical and topological information of PCB traces, achieving R²>0.99 up to 15GHz
- SSD DRAM I/O Performance and Dominant Factor Prediction
 - Analyzed and pre-processed multiple SSD product firmware data from the testing stage
 - Built AI/ML framework based on Transformer and Boosting models to predict DRAM I/O performance (R²>0.65)
 - Spotted dominant factors for I/O performance based on SHAP analysis
- Analog Circuit Optimization
 - Supported development of model-based reinforcement learning algorithms for analog circuits (OpAmp, TIA, Comparators) by setting up opensource-based circuit simulation environments
 - Proposed a neural simulator to estimate performance distributions under local variation and reward design for robust design without numerous MC simulations
 - Achieved 5x sample efficiency to meet the target specifications under local variation

Research Scientist, Facebook

Mar 2019 ~ Dec 2021

- Power delivery system optimization framework in Python
 - Optimized PMIC architecture (power tree) using machine learning clustering techniques
 - Built python models for PMIC components including regulators and power rails
 - Implemented web dashboard to visualize power across different PMIC configurations and use cases
- Design custom SRAM for hardware accelerator application
 - Designed column drivers and wordline drivers with write-assist technique in 7nm
 - Analyzed the impacts of design parameters on SRAM power, latency and error rate
 - Implemented scripts language to run multiple SPICE simulation with different configuration bits

Graduate Research Assistant, Columbia University

Sep 2013 ~ Dec 2018

- SRAM-ADC
 - Designed a novel SRAM architecture which can transform into a stochastic ADC with 6-bit level in 65nm
 - Repurposed bitcells as gain stages and linearized ADC output by pre-characterization with <1% area overhead
- Event-driven LDO designs based on digital PI controller
 - Designed continuous-time ADC and trigger generator for latency reduction
 - Implemented and optimized the digital controller algorithm to accelerate voltage regulation
 - Achieved 74x performance improvement in FoM and 4x area reduction over 3 prototyped designs in 65nm
- Analytical Model of Energy-Optimal Voltage
 - Derived an analytical solution of energy-optimal voltage by key technology parameters for V_{DD} scaling
 - Modeled the critical activity factor at which the energy-optimal voltage starts to saturate
 - Verified the models with <10% error across different technology nodes (130nm-45nm) in simulation

EDUCATION

Dec 2018	Columbia University (Advisor: Mingoo Seok)
	M.S./Ph.D. in Electrical Engineering, GPA 3.87
	Thesis: Fully Integrated Digital Low-drop-out Regulator Design based on Event-Driven PI control
Feb 2013	Pohang University of Science and Technology (POSTECH)
	B.S. in Electronic and Electrical Engineering, GPA 3.90 (summa cum laude)
	(Exchange student program in University of Minnesota, Twin cities, Fall 2011)

SKILLS

- Circuit Design: Proficiency in Verilog, Analog/Mixed-signal Design with Cadence tools
- Language: Proficiency in Python and Swift, Experience in Javascript
- **Deep learning framework**: Experience in PyTorch and Tensorflow

PUBLICATION (Google Scholar Profile)

12 **D. Kim,** J. Park, Y. Oh, and B. Hwang, "TraceFormer: S-parameter Prediction Framework for PCB Traces based on Graph Transformer," ACM/*IEEE Design Automation Conference (DAC)*, 2024 (Accepted)

- 11 Y. Oh, **D. Kim,** Y. Lee, and B. Hwang, "CRONuS: Circuit Rapid Optimization with Neural Simulator," *IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE)*, 2024 (To be appeared)
- 10 **D. Kim**, P. R. Kinget, and M. Seok, "SRAM-ADC: SRAM Circuits Transformable to a Stochastic ADC at Ultralow Area Overhead," *IEEE Solid-State Circuits Letters (SSCL)*, 2019
- 9 T. Yang, D. Kim, J. Li, P. R. Kinget and M. Seok, "In Situ and In-Field Technique for Monitoring and Decelerating NBTI in 6T-SRAM Register Files," *IEEE Transactions on Very Large Scale Integration Systems (TVLSI)*, 2018
- 8 M. Seok, P. R. Kinget, T. Yang, J. Li and **D. Kim**, "Recent advances in in-situ and in-field aging monitoring and compensation for integrated circuits: Invited paper," *IEEE International Reliability Physics Symposium (IRPS)*, 2018
- 7 **D. Kim,** S. Kim, H. Ham, J. Kim and M. Seok, "0.5V-V_{IN}, 165-mA/mm² Fully-Integrated Digital LDO based on Event-Driven Self-Triggering Control," *Symposium on VLSI Circuits (VLSIC)*, 2018
- 6 **D. Kim** and M. Seok, "A Fully Integrated Digital Low-Dropout Regulator Based on Event-Driven Explicit Time-Coding Architecture," *IEEE Journal of Solid-State Circuits (JSSC)*, Nov. 2017
- 5 S. J. Kim, D. Kim and Mingoo Seok, "Comparative study and optimization of synchronous and asynchronous comparators at near-threshold voltages," *IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)*, 2017
- 4 **D. Kim**, J. Kim, H. Ham, and M. Seok, "A 0.5V-V_{IN} 1.44mA-Class Event-Driven Digital LDO with a Fully Integrated 100pF Output Capacitor," *IEEE International Solid-State Circuits Conference (ISSCC)*, 2017
- 3 **D. Kim** and M. Seok, "Fully-Integrated Low Drop-Out Regulator based on Event-Driven PI Control," *IEEE International Solid-State Circuits Conference (ISSCC)*, 2016
- 2 D. Kim, J. Li, and M. Seok, "Energy-Optimal Voltage Model Supporting a Wide Range of Nodal Switching Rates for Early Design-Space Exploration" *IEEE International Conference on Computer Design (ICCD)*, 2015
- ¹ T. Yang, **D. Kim**, P. R. Kinget, and M. Seok, "In-situ techniques for in-field sensing of NBTI degradation in an SRAM register file," *IEEE International Solid-State Circuits Conference (ISSCC)*, 2015

SIDE PROJECTS

- Cartoon Face generation
 - Train object detection model (YOLOv5) to auto-label faces on cartoon images
 - Fine-tune StyleGAN using FreezeD model to add cartoon face classes on the model
- Smile Trainer iOS App

- Detect a user's facial expression using TrueDepth API in ARKit provided by Apple
- Provide two training methods to brighten a user's smile

Handwriting digit detector iOS App

- Train CNN model using MNIST dataset
- Detect digits from a drawing on screen
- Gmail Date and Time Formatter Chrome extension
 - Parse the inbox date and time component
 - Transform the date and time into user-defined format